If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+8a-61=0
a = 1; b = 8; c = -61;
Δ = b2-4ac
Δ = 82-4·1·(-61)
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{77}}{2*1}=\frac{-8-2\sqrt{77}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{77}}{2*1}=\frac{-8+2\sqrt{77}}{2} $
| 226.5b+b+b+(-2b)=540 | | 2x-2-3x(x+2)=8-4x | | 3/5=8x4 | | (4/5)x+(1/7)=3 | | 8-4q=q+16 | | k+10=-10+3k | | 4a−2=3a−7 | | x^2-5x+24/5=0 | | 1/7v-1/2=-4/3 | | 10x-x^2=17 | | 2t+6t=-72 | | -3x-17=-9x-31 | | X2-x+55=x2+4x+5 | | 317.4-63.6=c | | x^2+17x-11=13x+10 | | x-4•3=63 | | 4(x=1)=2x+4 | | 3y-5=7(y+1) | | |x+4|=6 | | (1/3)k-2=-6 | | -2(1+2x)=-2x+3(3x+3) | | 1.5=0.25x^2+0.2x | | 86-(6x+9)=6(x+2)+x | | 10+0.8y=30 | | 1-16b+11b=-6b+20 | | 7(1-a)=45 | | -314=-10x-124 | | (N=3)2n+5-n | | x-4^3=63 | | x^2-6+9=25 | | x+20+x-26=132 | | x/18-27=16 |